Academic Year: 2016 – 2017

Semester: Spring Date: May, 2017

Mathematics: OCM 103

Final Exam

Duration Time: 2 Hours

Answer All Questions

No. of questions: 4 Total Mark: 60

10

10

4

6

12

12

6

Question 1

(a) If
$$A = \begin{bmatrix} 3 & 2 & -2 \\ 1 & 0 & -1 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 0 & 1 \\ 3 & 1 & 2 \end{bmatrix}$ and $C = \begin{bmatrix} 3 & -3 \\ 2 & -1 \end{bmatrix}$

Find, if possible, A + B, A + C, $A \cdot B$, $A \cdot C$, $C \cdot A$, |A|, |C|, $|A \cdot B^{T}|$.

(b) Find the eigenvalues and eigenvectors of : $A = \begin{bmatrix} 2 & 2 \\ 2 & 1 \end{bmatrix}$.

Ouestion 2

(a) Write the linear system in matrix form and state the types of solutions:

x-2y+z=3, x + 2z = 0, y-2x + 3z = 5.

(b) If a drug exists in three dosage forms: The first of concentration 1 mg/tablet, The second of concentration 2 mg/tablet, The third of concentration 3 mg/tablet. If the pharmacist wanted to produce 12 tablets of concentration 2.5 mg / tablet by mixing whole tablets. Find two possible solutions.

Ouestion 3

(a) Find **y**` where:

(i)
$$y = 3^x - 2x^3 - 3x$$

(ii)
$$y = 3 + x^4 \cdot \sin x$$

(iii)
$$y = x + \cos x \cdot \log x$$

(i)
$$y = 3^{x} - 2x^{3} - 3x$$
 (ii) $y = 3 + x^{4} \cdot \sin x$ (iii) $y = x + \cos x \cdot \log x$ (iv) $y = \frac{3}{4} + \frac{1}{[x + \sin x]^{8}}$ (v) $y = \frac{3x}{4} + \frac{\ln x}{x^{5}}$ (vi) $y = [x + \ln x]^{5}$

(v)
$$y = \frac{3x}{4} + \frac{\ln x}{x^5}$$

$$(vi) y = [x + \ln x]^5$$

(b) Find the integrals:

(i)
$$\int (x^3 + \frac{1}{x^3} + \frac{3}{x}) dx$$
 (ii) $\int (3^x - e^x) dx$

(ii)
$$\int (3^x - e^x) dx$$

$$(iii) \int (2\cos x - 3\sin x) \, dx$$

(iv)
$$\int (x^2 - 3)^2 dx$$
 (v) $\int x \cdot \sin x dx$

$$(v)\int x. \sin x dx$$

$$(vi) \int \frac{x}{x^2 - 2x - 3} \, dx$$

Question 4

If the quantity of a drug in the blood decreases according to the data:

Time: 0 2 4 6 8 Hours Quantity: y 20 17 12 6 1 Units

From these data, find the relations: y = a + bt and $y = a e^{bt}$.

Good Luck

Dr. Mohamed Eid